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Abstract

The fracture toughening mechanism of shape memory alloys is studied analytically. The asymptotic stress analysis
of shape memory alloys under mode I loads is carried out using the Eshelby inclusion method and the weight
function method. The toughening mechanism due to martensite transformation of shape memory alloys is

investigated on the basis of the crack shielding theory of fracture mechanics. The transformation boundaries for
static and steady advanced cracks are also determined. The analytic results show that the martensite transformation
reduces the crack tip stress intensity factor and increases the toughness. The toughness of shape memory alloys is

enhanced by the transformed strain ®elds which tend to limit or prevent crack opening and advancing. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, shape memory alloys (SMAs) have attracted the attention of scienti®c and engineering
communities due to their potential use in many engineering applications (Birman, 1997; Chopra, 1996).
SMAs are metal alloys that exhibit the special characteristics of either large recoverable strains or large
induced internal forces under load and/or temperature changes. The unique thermo-mechanical
properties of SMAs are due to a crystallographic phase transformation from the austenite/parent phase
to the martensite/product phase or vice-versa. Martensite Transformations involve a lattice
transformation featuring shear deformation and a coordinated atomic movement, which maintains the
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one-to-one lattice correspondence between the lattice point in the parent and transformed phases
(Funakubo, 1984). The martensitic phase is a substitutional or interstitial solid solution. The
transformation is di�usion free which yields the same concentration of solute atoms dissolved in the
martensitic phase as in the parent phase. Martensitic transformations are typically characterized by well-
de®ned shape changes or surface relieves. Many researchers have studied the mechanical behavior of
SMAs (Achenbach and Muller, 1983, 1986; Brinson and Lammering, 1993; Brinson and Huang, 1996;
Tanaka, 1986, 1990; Sun and Hwang, 1993a, 1993b; Liang and Rogers, 1990, 1991). However, no work
has been reported in the literature on the fracture toughness of SMAs due to martensite
transformations.

The reduction of crack-tip stress intensity by the transformation-induced stresses is investigated in this
paper. A fracture toughening mechanism is analyzed for particles which experience a deviatoric
component of the macroscopic transformation strain. The transformation strain is then independent of
the particle location within the crack-tip ®eld. Therefore, the analysis is most pertinent to crack-tip
transformations which induce an equal number of variants per particle. Transformations which produce
a single variant per particle must also interact with the crack-tip shear strains to provide a further
reduction in the stress intensity. In this study, the transformation-toughening behavior of SMAs under
mode I loading is studied. For shape memory alloys, shear strains play an important role in the
transformation process compared with previously studied materials such as zirconia ceramics (Budiansky
et al., 1983; McMeeking and Evans, 1982; Evans, 1984; Stam and Giessen, 1995; Shen and Yu, 1996).
Firstly, the shape and size of the transformation zone in both static cracked and steady advance cracked
SMAs are described. Secondly, the e�ects of the transformation on the fracture toughness of shape
memory alloys are investigated using Eshelby's inclusion method and the weight function method. The
stress intensity factor due to the traction applied to the cylindrical particle is evaluated.

2. Analysis

2.1. Constitutive relations

There are two main approaches to establish constitutive relations of materials. One is the macroscopic
phenomenological method that requires a signi®cant amount of experimental work while the other is the
microscopic physical method that derives the constitutive relation from fundamental physical concepts.
The ®rst attempts to mathematically describe a behavior of shape memory materials can be traced to the
early work of Achenbach and Muller (1983, 1986). A macroscopic phenomenological model for shape
memory alloys was proposed by Tanaka (1986, 1990) on the basis of the energy balance equation and
the Clausius±Duhem inequality. Later it was modi®ed by many other researchers (Brinson and
Lammering, 1993; Brinson and Huang, 1996; Liang and Rogers, 1990, 1991). Boyd (1994) and
Lagoudas et al. (1997) also proposed a constitutive model which accounts for simultaneous
transformation and reorientation. Sun and Hwang (1993a, 1993b) presented a constitutive model which
accounts for the e�ects of micro-structural physical mechanisms such as internal stress, twin boundary
displacement and interface friction in the process of transformation or reorientation. It is possible to
describe and interpret the various phenomena by using this uni®ed inter-related model. Because no
limitation is made to the loading history in derivation of this equation, the model is valid for the
forward and reverse transformation processes under any non-proportional loading conditions and it can
be concluded that the dependency on loading history is replaced by the current values of internal
variables. In this study, Sun and Hwang's model is employed and the constitutive relations of shape
memory alloys are
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In the above, the over dot represents the partial di�erentiation with respect to time, h i denotes average
quantity, Ee

ij and Ep
ij are the elastic and plastic strains, respectively, g is the intensity of Ep

ij associated with
austenite-to-martensite transformation, Mijkl is the compliance of materials, T is temperature, x is the
internal variant representing the transformed volume fraction of martensite, and B1�T �, C0�T, x� are the
material functions.

2.2. Stress ®eld analysis

In this study, it is assumed that the height of the transformation zone is small compared with the
length of a crack. Under this small scale transformation condition, an asymptotic problem can be
formulated for a semi-in®nite crack as shown in Fig. 1 where the stress ®eld is given by

Fig. 1. A semi-in®nite crack in homogeneous shape memory alloys.

S. Yi, S. Gao / International Journal of Solids and Structures 37 (2000) 5315±5327 5317



sij � K1�������
2pr
p � fij�y� �4�

where K1 is the applied or remote stress intensity factor. It is assumed that crack-tip transformation
occurs when the remote stress intensity factor K1 reaches a critical value and thus creates a crack-tip
transformation zone extending a distance r from the crack tip. The critical stress intensity factor Kc

depends on particle size, temperature, chemical composition, and material sti�ness.
Consider plane strain crack problems under mode I loads in which the stress ®elds are symmetric with

respect to the crack. The functions fij�y� are universal and can be found in many textbooks. For the
crack in the material considered here, the stresses and strains are unbounded at the crack tip. Therefore,
the material near the crack tip is fully transformed. It is assumed that K tip governs the fracture
processes at the tip and then the stress ®eld becomes

sij � K tip�������
2pr
p � fij�y� �5�

The reduction from K1 to K tip determines the toughening e�ect due to the transformation.
The relationship between crack tip shielding and toughness change is established using the crack-

advance mechanism. For brittle materials, crack growth generally occurs by direct advance of the crack
tip and, hence, crack-tip stresses are of primary signi®cance. However, the stresses ahead of the crack
tip may be signi®cant for SMAs since they exhibit a peculiar inelastic behavior. Near the tip region, the
linearity of the stress±strain curve at large strains indicates that the near tip stress be characterized by
the stress intensity factor K tip: The crack-tip stress intensity factor is smaller than the stress intensity
factor K1 associated with the applied remote ®eld. The reduced stress intensity DK can be de®ned as

DK � K1 ÿ K tip �6�
which corresponds directly to the change of fracture toughness. The crack propagates when K tip attains
the toughness of the fully transformed material ahead of the crack tip Kc: The applied stress intensity at
crack advance becomes

K1c � K tip
c � DKc �7�

The toughness change due to transformation can then be evaluated by DKc:

2.3. Shape and size of transformation zone

The boundary of the transformation can be determined approximately by the undisturbed remote
stress ®eld when the transformation strain is very small. However, if the transformation strain is not
small, the remote stress ®eld around the transformation zone will be disturbed by the crack tip stress
®eld. Evans (1984) pointed out that the transformation zone determined by the remote stress ®eld is
bigger than that by the crack tip stress ®eld. By following Evans (1984), the boundary of the
transformation zone is approximately determined by the average value of K1 and K tip and the stress
intensity factor after transformation is de®ned as

K �
ÿ
K1 � K tip

�
=2 �8�

For plane strain problems, only sx, sy, txy exist. Under the mode I loading, the stresses induced by the
remote stress intensity factor K at a distance r away from the crack tip are given by
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The yield condition of shape memory alloys is de®ned as (Sun and Hwang, 1993a, 1993b; Fischer et al.,
1996)
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By substituting the crack tip stress equations (9) into the yield condition (10), the transformation zone
for static cracked shape memory alloys can be expressed as
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Fig. 2. The fully developed transformation zone with a semi-in®nite wake.
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where Ms is the temperature of martensite start, a, b are the material constants and sce is a parameter
which depends on temperature, chemical composition, and material moduli.

When the applied load exceeds the initial critical fracture toughness, crack growth will occur. With
increasing the applied load, the crack will propagate stably until it is in the steady-advanced state. After
that, the crack will propagate unstably. As the crack advances under steady-state conditions,
transformation occurs along a curve ahead of the crack tip, and in the wake region behind, no further
transformation occurs as shown in Fig. 2 (Budiansky et al., 1983; Evans, 1984). The crack growth is
assumed to occur at a constant critical value of the crack-tip stress intensity factor Kc and the shape of
the transformation zone will change into a new shape with a long transformed wake. The half height of
the wake H is

H � max
�
r�y�sin y
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Combining Eqs. (12) with (14) leads to
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where ŷ1828:
When the crack advances at a constant K into the initial transformation zone leaving behind a semi-

in®nite wake the half height of which is H and reaches the steady-state, the boundary of the
transformation zone for steady advanced cracked materials can be determined by Eq. (15) as
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Fig. 3. Coordinate system used for the stress analysis.
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2.4. Derivation of transformation strains

As shown in Fig. 3, transformation particles can be treated as inclusions and inhomogeneities and
then the following equation can be obtained using Eshelby's equivalent method (Eshelby, 1957)
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where E��kl are uniform eigenstrains of the inclusion problem, Ep
kl are inelastic strains, Cijkl and C �ijkl are

the moduli of untransformed and transformed SMAs, respectively, s0ij and E0kl are the applied remote
stresses and corresponding strains, respectively, and Eshelby's variant matrix �Vklmn is
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Hence, the transformation strain Etij and its time derivative _Etij can be obtained as
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The inelastic strains E p

kl can be determined from the constitutive relation. Substituting Eq. (1) into (23)
yields the transformation strains induced by the inelastic strains of SMA inclusions.

2.5. Toughening e�ects of transformation

The stress intensity induced at a crack tip by the transformation of one particle can be calculated by
Eshelby's method (Eshelby, 1957). It is assumed that the particle is removed from the matrix, and the
particle undergoes the unconstrained transformation with the strain Et: The original shape of the particle
can be restored by applying surface traction Qc � ÿnCEt, where C is the moduli of the particle and n is
the outward surface normal vector as shown in Fig. 3. The two symmetric particles ®t into the unloaded
matrix from which they were removed and the equilibrium can be established by nullifying the
constraining surface traction with a layer of body forces.

The principle of linear superposition shows that the stress intensity factor due to the transformation
that occurs in the unloaded body is the stress-intensity change imposed when the transformation occurs
in a stressed specimen. The stress intensity factor due to the traction Q � ÿQc � nCEt applied to the
particle periphery can be computed for inclusions of arbitrary shape and elasticity. However, the present
study is restricted to the case of a long cylindrical particle as shown in Fig. 4 whose axis is parallel to
the crack front. The material properties of the particle are di�erent from those of the matrix. Thus, it is
an inhomogeneity inclusion problem. The cylindrical particle represents either a large number of ®nite
particles distributed through the specimen thickness or, in another application, the entire transformation
zone.

Fig. 4. Two symmetric circular transformation spots near a crack tip.
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A useful tool for calculating the stress intensity factor due to the traction Q is the weight function
proposed by Bueckner (1970). Then it was further elaborated by Paris et al. (1976). The weight
functions h for plane strain deformation are shown as (McMeeking and Evans, 1982)
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which dominates the weight function near the crack tip only. For the remote ®eld, nonsingular terms
become signi®cant, with the result that the weight-function values on the free surfaces of ®nite bodies
di�er signi®cantly from Eq. (23). In most cases the region of transforming particles near the tip is within
the area of dominance of Eq. (23). In addition, the stress induced by the transformation of cylindrical
particles diminishes by the inverse square of the distance from the particle. This implies that typical
surface traction required to nullify transformation-induced stresses at external surfaces is negligibly
small. Consequently, the reduced stress intensity factor induced by the transformation of cylindrical
particles near the crack tip can be computed from
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1ÿ 2n
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where Sp is the perimeter of the particle. For the mode I loading, Et is symmetric. By using the Gaussian
integral equation, Eq. (24) can be rewritten as
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1ÿ 2n

�
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div�Et � h� dA �25�

where A is the transformation area.
By combining Eqs. (23) and (25), the rate of the reduced crack tip stress intensity factor due to the

transformation becomes

D _K � E
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where F1 and F2 are the kernel functions which depend on the material characteristics and temperature.

3. Results and discussion

Firstly, transformation boundaries are calculated. The material properties of TiNi based SMAs used
for this study are given in Table 1. The remote loading increases proportionally and monotonically.

Table 1

Material properties of shape memory alloys (Brinson and Lammering, 1993)

Ea (MPa) Em (MPa) Y (MPa/K) EL Mf (K) Ms (K) As (K) Af (K) Cm (MPa/K) Ca (MPa/K) scr
s (MPa) scr

f (MPa)

67� 103 30� 103 0.55 0.067 282 291 308 322 8 13.8 100 170
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Then the material near the crack tip possesses a tripartite structure. In the inner most region, the
maximum stress exceeds the transformation ®nish critical stress and the material is fully transformed. In
the outer most region, the stresses are below the transformation threshold and the material is
untransformed. Between these two zones, there is a transition region where the material is partially
transformed. Fig. 5 illustrates the transformation starting and ®nishing boundaries at temperature T =
388C. The outer curve is the transformation start curve while the inner one is the transformation ®nish
curve. Under the mode I loading, the symmetric con®guration is obtained. It is seen that the shapes of
the two curves are very similar except that the radii are di�erent.

Secondly, the e�ect of applied loads on crack tip SIFs is studied. Fig. 6 illustrates the crack tip SIF
versus the applied remote loading at the temperature T=388C. The results show that the ratio between
the crack tip SIF and the applied load is reduced when the applied loading increases beyond the critical
stress. This is because the extent of the transformation increases when the applied remote stress
increases continuously. As a result, the rate of the reduced crack tip SIF increases and the toughness of
SMAs increases.

Thirdly, consider thermal and mechanical loads shown in Fig. 7. At ®rst, the temperature is 388C and

Fig. 5. The boundaries of transformation start and ®nish zones at T=388C for static cracks.

Fig. 6. The crack tip SIF with respect to the applied remote loading at T=388C
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Fig. 7. Thermal and mechanical loads: (a) temperature curve; (b) applied loads.

Fig. 8. The crack tip SIF.
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the applied remote stress increases from zero to the transformation initial value K 0
c at time t1 and

further to the value K1 � 2:15K c
0, at time t2 as shown in Fig. 7(b). Then the applied load remains

constant, the temperature increases from 38 to 888C as shown in Fig. 7(a). Fig. 8 shows the crack tip
SIF during the loading process. During the time interval 0±t1, the load increases from 0 to K 0

c and the
crack growth does not occur during this period. The crack tip SIF increases linearly with increasing the
remote load. When the load surpasses the K 0

c during the time interval t1±t2, the transformation
toughening results in the slow increase of crack tip SIFs as shown in Fig. 6. The crack tip is shielded
during this period. After time t2, the load remains constant and temperature increases. Then the crack
tip SIF is greatly decreased with increasing temperature. This phenomenon shows that increasing
temperature is a feasible way to release the crack tip SIF or relax the crack tip stress after crack growth
has taken place.

Next the e�ects of the ratio between untransformed and transformed SMAs moduli Ea=Em on the
toughness mechanism of SMAs are studied. The mechanical load is applied between the initial fracture
toughness K 0

c and ®nal fracture toughness Kc at isothermal conditions. Fig. 9 illustrates the relation
between the normalized crack tip stress intensity factor (SIF) and the modulus ratio at T = 388C. In
general, the moduli of transformed SMAs are smaller than those of untransformed materials. It shows
that the crack tip SIF decreases with increasing the modulus ratio. This study shows that the greater
reduction of the crack tip stress intensity can be achieved by using larger modulus ratios.

Lastly steady-advanced cracks are considered. For steady-advanced crack problems, the crack is
stable when the applied load is below the critical value of crack propagation and no crack propagation
occurs when the applied loading does not increase. When the applied load is above the critical value of
the crack propagation, the crack advances unstably even at a constant loading. The critical value of
crack propagation is related to the fracture toughness Kc which is a material characteristic constant and
depends on temperature. It should also be noticed that the applied remote stress does not a�ect the
value of Kc: Isothermal conditions are considered in this study. The analytic results show a signi®cant
toughening e�ect. The non-dimensional toughness Kc=K

0
c � 1:23 is obtained at T=388C.

4. Conclusions

Shape memory alloys with semi-in®nite cracks subjected to the mode I loading are considered. By
using Eshelby's inclusion method and the weight function method, fracture toughness mechanism due to

Fig. 9. The crack tip SIF versus modulus ratio at temperature T=388C.
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martensite transformation mechanism is investigated. The shape and size of the transformation zones for
both stationary and steady advanced cracks have been analyzed. The studies show that martensite
transformation reduces the crack tip stress intensity and increases the toughness of SMAs. Temperature
seems to play an important role in the toughening process of SMAs. The crack tip SIF is greatly
decreased with increasing temperature. It is a feasible way to relax the crack tip stress after crack
growth has taken place. The study also shows that the greater reduction of the crack tip stress intensity
can be achieved by using the larger ratio between untransformed and transformed SMAs moduli.
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